Войти
Закрыть

Будова, властивості та функції ДНК

10 Клас

• Будова ДНК. Молекули ДНК у клітинах еукаріотів містяться в ядрі, пластидах і мітохондріях, а прокаріотів - в особливих ділянках цитоплазми. Розшифрування структури ДНК має свою історію. 1950 року американський учений українського походження Ервін Чаргафф (1905-2002) та його колеги виявили певні закономірності кількісного вмісту нітратних основ у молекулі ДНК: по-перше, кількість нуклеотидів, що містять аденін у будь-якій молекулі ДНК, дорівнює числу нуклеотидів, які містять тимін (А = Т), а число нуклеотидів з гуаніном - числу нуклеотидів з цитозином (Г = Ц); по-друге, сума нуклеотидів з аденіном і гуаніном дорівнює сумі нуклеотидів з тиміном і цитозином (А + Г = Т + Ц). Як ви же знаєте, це відкриття сприяло встановленню в 50-х роках XX ст. просторової структури молекули ДНК (мал. 12.1). Молекула ДНК складається з двох ланцюгів нуклеотидів, які сполучаються між собою за допомогою водневих зв’язків. Ці зв’язки виникають між двома нуклеотидами, які ніби доповнюють один одного за розмірами. Встановлено, що залишок аденіну (А) нуклеотиду одного ланцюга молекули ДНК завжди сполучається із залишком тиміну (Т) нуклеотиду іншого ланцюга (між ними виникає два водневі зв’язки), а гуаніну (Г) - з цитозином (Ц) (між ними виникає три водневі зв’язки). Чітка відповідність нуклеотидів у двох ланцюгах ДНК має назву комплементарність (від лат. комплементум - доповнення). При цьому два ланцюги нуклеотидів обвивають один одного, створюючи закручену вправо спіраль діаметром приблизно 2 нм [1 нм (нанометр) дорівнює 1 • 10-6 мм]. Так виникає вторинна структура молекули ДНК, тоді як первинна - це певна послідовність залишків нуклеотидів, розташованих у вигляді подвійного ланцюга. При цьому окремі нуклеотиди сполучаються між собою в ланцюжок за рахунок особливого різновиду міцних ковалентних зв’язків, які виникають між залишком вуглевода одного нуклеотиду та залишком ортофосфатної кислоти іншого....

Нуклеїнові кислоти. Властивості та функції РНК. АТФ

10 Клас

• Нуклеїнові кислоти - складні високомолекулярні біополімери, мономерами яких є нуклеотиди. Число нуклеотидів у складі однієї молекули нуклеїнової кислоти може становити від 200 до 200 млн. Уперше нуклеїнові кислоти виявили в ядрі клітин, звідки й походить назва цих сполук (від лат. нуклеус - ядро). Але згодом ці сполуки виявили і в інших частинах клітини. Молекула нуклеотиду складається з трьох частин: залишків нітратної основи, п’ятивуглецевого моносахариду (пентози) та ортофосфатної кислоти (мал. 11.1). Залежно від виду пентози, що входить до складу нуклеотиду, розрізняють два типи нуклеїнових кислот: дезоксирибонуклеїнову (ДНК) і рибонуклеїнові (РНК). До складу ДНК входить залишок дезоксирибози, а РНК - рибози. У молекулах ДНК і РНК містяться залишки різних нітратних основ. У молекулі ДНК - залишки аденіну (скорочено позначається літерою А), гуаніну (Г), цитозину (Ц) та тиміну (Т), у молекулі РНК - аденіну (А), гуаніну (Г), цитозину (Ц) та урацилу (У). Отже, зверніть увагу: три типи нітратних основ для молекул ДНК і РНК спільні (нуклеотиди з аденіном, гуаніном і цитозином), натомість тимін міститься лише в молекулах ДНК, тоді як урацил - тільки в молекулах РНК (мал. 11.2). Як і молекулам білків, молекулам нуклеїнових кислот притаманні різні рівні просторової організації (конформації). • Типи РНК. Молекули РНК клітин прокаріотів та еукаріотів складаються з одного ланцюга. Існують три основні типи РНК, які відрізняються за місцем розташування у клітині, розмірами та функціями. Інформаційна, або матрична, РНК (іРНК, або мРНК) становить собою копію певної ділянки молекули ДНК. Така молекула переносить спадкову інформацію від ДНК до місця синтезу поліпептидного ланцюга, а також бере безпосередню участь у його збиранні....

Функції білків

10 Клас

• Будівельна, або структурна, функція полягає в тому, що білки є складовим компонентом клітинних мембран. З білків складаються структури скелета клітин (мікротрубочки і мікронитки), які закріплюють у певному положенні органели або ж забезпечують їхнє пересування по клітині. Білки також входять до складу рибосом, хромосом та майже усіх інших клітинних структур. Головним компонентом хрящів і сухожилків є пружний і міцний білок колаген. Волокна цього білка є й в інших різновидах тканин внутрішнього середовища. Еластин, що міститься у зв’язках, має здатність розтягуватися; пружності кісткам надає білок колаген. Кератин, як вам відомо, входить до складу таких утворів хребетних тварин, як кігті, нігті, роги, копита, дзьоби, волосся, голки тощо. Головним компонентом шовкових ниток і павутиння слугує білок фіброїн (мал. 10.1). • Енергетична функція білків полягає в тому, що за повного розщеплення 1 г білків у середньому вивільняється 17,2 кДж енергії. • Захисна функція білків. Структури, до складу яких входять білки (зовнішній скелет членистоногих, кістки, хрящові утвори), запобігають ушкодженню клітин, органів й організму в цілому. Білки захищають організми від проникнення ззовні сторонніх сполук і хвороботворних мікроорганізмів. Імуноглобуліни (або антитіла) хребетних тварин - спеціалізовані білки, здатні «розпізнавати» та знешкоджувати бактерії, віруси та інші - антигени. Це сполуки, які організм сприймає як чужорідні і зумовлюють специфічну імунну відповідь. Імуноглобулінам притаманна специфічність - певне антитіло утворюється у відповідь на надходження в організм того чи іншого антигену. Інтерферон - це білок, який пригнічує розмноження вірусів. На його основі створено лікувальні противірусні препарати. Білки крові (пригадайте, які) беруть участь у процесах її зсідання та утворення тромбів, запобігаючи крововтратам при ушкодженні стінок кровоносних судин. Захисну функцію можуть виконувати деякі ферменти, наприклад лізоцим, який міститься у слині, слизових оболонках, слізній рідині та знешкоджує різних хвороботворних агентів....

Білки: будова та властивості

10 Клас

У таблиці 9.1 (с. 52) наведено повні та скорочені назви основних амінокислот. Різні комбінації лише 20 амінокислот забезпечують нескінченну різноманітність білкових молекул (число можливих варіантів - близько 2 • 1018). Зокрема, в організмі людини трапляється понад 5 млн типів білкових молекул. Молекула кожного певного білка характеризується специфічними складом і послідовністю амінокислотних залишків, які надають їй неповторних функціональних властивостей. Існують різні класифікації амінокислот. Зокрема, амінокислоти поділяють на замінні та незамінні. Замінні амінокислоти організму людини і тварин здатні синтезуватися з продуктів обміну речовин. Натомість, незамінні амінокислоти в організмах людини і тварин не утворюються, а надходять разом з їжею. Ці амінокислоти синтезують рослини, гриби, бактерії. Білки, які містять усі незамінні амінокислоти, називають повноцінними, на відміну від неповноцінних, до складу яких не входять окремі незамінні амінокислоти. Слід зазначити, що для різних видів тварин і людини набір незамінних амінокислот неоднаковий, до того ж він може змінюватися з віком. Наприклад, аргінін або гістидин - замінні для дорослих і незамінні для дітей. Відсутність або нестача однієї чи кількох незамінних амінокислот спричиняють негативний баланс Нітрогену в організмі, порушення біосинтезу білків, гальмування росту й розвитку. Залишки молекул амінокислот у складі білків сполучені між собою міцним ковалентним зв’язком, який виникає між карбоксильною групою однієї амінокислоти та аміногрупою іншої. Цей тип зв’язку називають пептидним (від грец. пептос - зварений). Завдяки такому міцному зв’язку утворюється сполука, яка складається із залишків двох амінокислот - дипептид. Структури, які складаються з великої кількості залишків амінокислот (від 6-10 до декількох десятків), належать до поліпептидів (пептидний зв’язок позначено кольором):...

Вуглеводи: різноманітність, властивості та функції

10 Клас

Вуглеводи — це сполуки, у яких співвідношення С, Н, О здебільшого відповідають формулі (СН2О)n, де n дорівнює трьом і більше. Проте є вуглеводи, в яких співвідношення зазначених елементів дещо інше, а деякі містять також атоми Нітрогену, Фосфору чи Сульфуру. У клітинах тварин і грибів вуглеводи містяться у незначній кількості (близько 1 % сухої маси, у клітинах печінки та м’язів - до 5 %), а в рослинних клітинах їхній вміст значно більший (до 60-90 %). • Будова і властивості вуглеводів. Залежно від кількості мономерів, що входять до складу молекул, вуглеводи поділяють на моносахариди, олігосахариди та полісахариди. Моносахариди здебільшого мають загальну формулу CnH2nOn. Вони можуть містити від 3 до 10 атомів Карбону: тріози (3 атоми Карбону), тетрози (4), пентози (5), гексози (6) і так далі до декози (10). У природі найпоширеніші гексози та пентози. Прикладами гексоз є глюкоза, фруктоза (мал. 8.1). Ці сполуки надають солодкого смаку плодам, меду, а глюкоза є дуже важливою складовою метаболізму. До пентоз, наприклад, належать рибоза і дезоксирибоза, що входять до складу відповідно рибонуклеїнових (РНК) і дезоксирибонуклеїнової (ДНК) кислот. Моносахариди добре розчиняються у воді. Олігосахариди - полімерні вуглеводи, в яких 2-10 моносахаридних ланок з’єднані ковалентними (глікозидними) зв’язками. Зокрема, дисахариди утворені сполученням залишків двох молекул моносахаридів. Приклади дисахаридів: мальтоза (солодовий цукор) - складається з двох залишків глюкози; сахароза (буряковий або тростинний цукор) - складається із залишків глюкози і фруктози; лактоза (молочний цукор) - складається з глюкози та галактози; трегалоза (грибний цукор) - складається з двох залишків глюкози (мал. 8.2). Вони мають солодкий смак і добре розчиняються у воді....

Органічні речовини живих істот. Ліпіди

10 Клас

• Органічні речовини - це сполуки Карбону з іншими елементами, що виникли в живих істотах або є продуктами їхньої життєдіяльності. Органічні сполуки присутні в атмосфері, поверхневих і підземних водах, осадах, ґрунтах і гірських породах. У складі органічних сполук переважають органогенні хімічні елементи (Гідроген, Оксиген, Нітроген і Карбон). Ковалентно зв’язані атоми Карбону утворюють ланцюжки або ряди кілець (так званий скелет молекули). До складу клітин входять різні органічні сполуки: ліпіди, вуглеводи, білки, нуклеїнові кислоти тощо. Їхні молекули можуть мати високу молекулярну масу. Зокрема, молекулярна маса більшості білків становить від 6000 до 1 000 000, деяких нуклеїнових кислот - сягає кількох мільярдів дальтонів (1 дальтон відповідає 1/12 атомної маси ізотопу карбону 12С, тобто 1,67 • 1024 г). Високомолекулярні органічні сполуки можуть складатися з великої кількості однакових чи різних за хімічною будовою ланок (простих молекул - мономерів). Такі сполуки називають біополімерами, або макромолекулами. Наприклад, молекули білків складаються із залишків амінокислот, нуклеїнових кислот - з нуклеотидів, а складних вуглеводів (полісахаридів) - з моносахаридів (див. таблицю 7.1). Біологічно активні речовини (органічні речовини - ферменти, гормони, вітаміни, деякі отрути тощо) впливають на процеси обміну речовин і перетворення енергії загалом або на окремі їхні ланки. Багато з них здійснюють гуморальну регуляцію процесів життєдіяльності різноманітних істот. Отже, запам’ятайте: органічними сполуками називають речовини, утворені атомами Карбону, між якими встановлюються міцні ковалентні зв’язки. Уміст органічних сполук у клітинах становить в середньому 20-30 %. Огляд основних класів органічних сполук почнемо з ліпідів. Ліпіди - переважно гідрофобні органічні сполуки, які розчиняються в неполярних речовинах (естері, хлороформі, ацетоні та ін.). Молекулярна маса ліпідів зазвичай становить 50-1500. Більшість ліпідів - похідні вищих жирних кислот, спиртів або альдегідів....

Функції води в життєдіяльності організмів

10 Клас

Серед усіх хімічних сполук виняткова роль у забезпеченні процесів життєдіяльності організмів належить воді. Саме у водному середовищі виникло життя на нашій планеті, тому без води неможлива життєдіяльність жодних організмів. Вміст води в організмах становить 60-70 %, а в деяких випадках - до 98 %. Цитоплазма більшості клітин містить приблизно 80 % води. Кров і лімфа людини містять понад 80 % води. Отже, вода утворює основу внутрішнього середовища організмів (цитоплазми одноклітинних тварин, крові, лімфи, порожнинної рідини багатоклітинних організмів, соків рослин тощо). У водному середовищі відбуваються процеси обміну речовин і перетворення енергії. Вода бере безпосередню участь у реакціях розщеплення органічних сполук. • Структура, властивості та функції води. Воді притаманні унікальні хімічні й фізичні властивості. Погляньте на малюнок 6.1: молекула води (Н2О) складається з двох атомів Гідрогену, сполучених з атомом Оксигену ковалентними зв’язками. На полюсах молекули води розміщені позитивні і негативний заряди, тобто вона полярна. Завдяки цьому дві сусідні молекули зазвичай взаємно притягуються за рахунок сил електростатичної взаємодії між негативним зарядом атома Оксигену однієї молекули та позитивним зарядом атома Гідрогену іншої. При цьому виникає водневий зв’язок (мал. 6.2), у 15-20 разів слабший за ковалентний. Коли вода перебуває в рідкому стані, її молекули безперервно рухаються і водневі зв’язки постійно то розриваються, то виникають знову....

Роль неорганічних речовин в життєдіяльності організмів

10 Клас

Вам уже відомо, що всі хімічні речовини поділяють на органічні та неорганічні. Загальний вміст неорганічних речовин (крім води) у різних клітинах варіює в межах від одного до декількох відсотків. Серед неорганічних речовин важливу роль у забезпеченні функціонування окремих клітин і цілісних організмів відіграють вода, неорганічні кислоти, луги та солі. • Солі неорганічних кислот усередині живих організмів розчинені у воді (у вигляді йонів) або перебувають у твердому стані (наприклад, солі Кальцію та Фосфору у складі скелета людини та більшості хребетних тварин) (мал. 5.1). Йони утворені катіонами металічних елементів (Калію, Натрію, Кальцію, Магнію тощо) та аніонами неорганічних кислот (Cl-, HSO4-, SO24-, НСО3-, Н2РО4-, НРО24- та ін.). Різна концентрація йонів Na+ і К+ поза клітинами та всередині них приводить до виникнення різниці електричних потенціалів на мембранах, які оточують клітини. Це забезпечує транспорт речовин через мембрани, а також передачу нервових імпульсів. До складу багатьох ферментів входять йони Са2+ і Mg2+, які забезпечують їхню активність. Присутність у плазмі крові йонів Са2+ - необхідна умова зсідання крові. За нестачі солей Кальцію порушується робота серцевого та скелетних м’язів (зокрема, виникають судоми)....

Елементний склад організмів

10 Клас

Ви вже знаєте, що науку, яка вивчає хімічний склад живих організмів, будову, властивості і роль виявлених у них сполук, шляхи їхнього виникнення та перетворення, називають біологічною хімією, або біохімією. Вона досліджує процеси обміну речовин і перетворення енергії в організмах на молекулярному рівні. Одне з головних завдань біохімії - з’ясування механізмів регуляції життєдіяльності клітин і організму в цілому, які забезпечують єдність процесів обміну речовин і перетворення енергії в організмі. • Елементний склад живих організмів. Хімічний склад організмів, на відміну від об’єктів неживої природи, відносно сталий. З понад 100 різних типів атомів хімічних елементів та їхніх ізотопів у живих організмах виявляють майже 60. Одні з них є обов’язковими в усіх організмах без винятку, інші - лише в окремих. Разом з тим у живих організмах не виявлено жодного з хімічних елементів, якого б не було в неживій природі. Це одне зі свідчень єдності живої і неживої природи. Найбільше в організмах так званих макроелементів, тобто хімічних елементів, сумарна частка яких - близько 99,9 % їхньої маси. До них належать Гідроген, Карбон, Нітроген, Оксиген, Кальцій, Калій, Натрій, Ферум, Магній, Сульфур, Хлор, Фосфор (див. табл. 4.1). Перші чотири з них відносять до органогенних елементів, оскільки їхня сумарна частка становить майже 98 % маси живих істот. Крім того, ці елементи є основними складовими органічних сполук, про які йтиметься в наступній темі....

Методи досліджень у біології. Значення досягнень біологічної науки в житті людини і суспільства

10 Клас

• Основні методи біологічних досліджень. Живу матерію на різних рівнях організації досліджують також різними методами, основні з яких - порівняльно-описовий, експериментальний, моніторинг і моделювання. Отримані результати обробляють за допомогою математично-статистичного аналізу. За допомогою порівняльно-описового методу описують нові для науки види організмів, процеси чи явища. Його започаткував давньогрецький учений Арістотель. Однак часто замало просто описати новий вид організмів, процес, явище тощо. Щоб встановити своєрідність об’єкта досліджень, його необхідно порівняти з іншими подібними об’єктами, процесами чи явищами. Наприклад, відкриття нових для науки видів неможливе без аналізу їхньої подібності та відмінностей від близьких форм. Те саме стосується органічних сполук, біохімічних процесів, будови та функцій клітин, тканин, організмів, екосистем тощо. Для наукового дослідження будь-який біологічний об’єкт потрібно класифікувати, тобто визначити його належність до тієї чи іншої групи (наприклад, органічних речовин - до білків, ліпідів, вуглеводів чи нуклеїнових кислот тощо, живих істот - до відповідного виду, роду, родини і т. д.). Порівняння об’єктів дослідження можливе лише в межах певного рівня організації (наприклад, порівняння певної молекули з іншими молекулами, клітини - з іншими клітинами, виду - з іншими видами тощо). Експериментальний метод полягає в тому, що дослідники активно втручаються в будову об’єктів досліджень, перебіг тих чи інших процесів, явищ і спостерігають за наслідками такого втручання. Експерименти бувають польові та лабораторні. Польові експерименти здійснюють у природних умовах: на експериментальних ділянках вивчають дію певних речовин на ріст рослин, випробовують заходи боротьби зі шкідниками, досліджують вплив господарської діяльності людини на природні екосистеми тощо. Лабораторні експерименти проводять у спеціально обладнаних приміщеннях (лабораторіях) (мал. 3.1). У таких дослідженнях часто використовують піддослідні організми, яких дослідники штучно розводять та утримують. Деякі лабораторні культури дали початок промисловим культурам, які використовують для одержання потрібних людині продуктів. Це один з напрямів досліджень у біотехнології (наприклад, використання дріжджів у хлібопекарській справі, виноробстві; бактерій і грибів - для отримання антибіотиків тощо)....

Навігація