Войти
Закрыть

Нуклеїнові кислоти і білки

10 Клас

Усі форми життя за своєю природою — біомолекулярні роботи: від зародження і до кінця свого життєвого циклу їхні біохімічні процеси чітко відповідають певній програмі. Ця програма керує також взаємодією організму з довкіллям, а «інструкції» про її виконання «записані» в молекулах ДНК — дезоксирибонуклеїнової кислоти. Молекула ДНК має структуру подвійної спіралі Найменшим структурним елементом ДНК є окремі нуклеотиди (рис. 16.1, А). Вони складаються з нітрогеновмісної основи, яка є елементарним носієм генетичної інформації, вуглеводу дезоксирибози та ортофосфатного залишку, що разом із дезоксирибозою формують каркас молекули ДНК. Нуклеотиди полімеризуються, формуючи ланцюг ДНК (рис. 16.1, Б). У більшості організмів (окрім деяких груп вірусів) ДНК формує подвійну спіраль завдяки водневим зв’язкам, що виникають між нітрогеновмісними основами двох ланцюгів (рис. 16.1, В, Г). До складу ДНК входить чотири типи нітрогеновмісних основ: аденін (А), гуанін (Г), тимін (Т) і цитозин (Ц). За принципом комплементарності аденін парується із тиміном, гуанін — з цитозином. Принцип комплементарності — це основний принцип, на якому засновані процеси реплікації ДНК (відтворення) та транскрипції (зчитування генетичної інформації)....

Вуглеводи і ліпіди

10 Клас

Ви вже ознайомилися з величезним біорізноманіттям, що утворилося на нашій планеті у процесі еволюції. Відомо, що еволюція відбувається і на молекулярному рівні: рівні генів (що формують генотип) та біомолекул (що визначають фенотип). Оскільки еволюція є послідовним процесом, то більшість організмів складається з одних і тих самих молекул, про які ви дізнаєтеся в цьому розділі. Наш організм, як і інші організми, складається з тисяч різних молекул, що за структурою та властивостями поділяють на кілька класів, найбільшими з яких є вуглеводи, ліпіди, білки та нуклеїнові кислоти. Всі їх представники складаються з карбонових ланцюгів, до яких приєднані специфічні функціональні групи. Вуглеводи — найпоширеніші органічні речовини на Землі Вуглеводи — це клас найпоширеніших органічних речовин на нашій планеті, в основному завдяки целюлозі — полімерному вуглеводу, що його містять усі рослини. Вуглеводи є скрізь: у цукорниці у вас на кухні, у будь-якому дерев’яному предметі вдома, а також, звичайно, у нас самих. Назва вуглеводів говорить сама за себе: вони складаються з атомів Карбону, що утворюють їх каркас, та «молекул» води, які з ним з’єднані1. У результаті формуються гідроксильні (—ОН), альдегідні (—СНО) та кетонні (>С=0) функціональні групи (рис. 15.1). 1 Зрозуміло, що під таке визначення не підпадають вуглеводи, що містять атоми Нітрогену, Фосфору, Сульфуру тощо. Утім, такі вуглеводи були відкриті після появи самої назви....

Біологічне різноманіття як результат еволюції

10 Клас

Як ми вже згадували на початку розділу, нашу планету населяє величезна кількість різноманітних організмів — щонайменше 1,7 млн видів. А це лише невелика частина того видового багатства, яке існувало на Землі за всю її геологічну історію, починаючи з моменту виникнення життя приблизно 4,1—3,8 млрд років тому. Однак усі організми мають спільне походження і пов’язані один з одним родинними зв’язками. Вам уже відомо, що під час побудови еволюційних дерев — кладограм, найбільш споріднені види будуть об’єднуватися один з одним у більші групи — таксони, а ці таксони, своєю чергою, у ще більші таксони і так далі. Якщо продовжити об’єднувати таксони на основі їх спільного походження, то може виявитися, що всі вони будуть об’єднані в одне велике дерево зі спільним коренем. Усі організми можна помістити на кінчики гілок цього гігантського еволюційного дерева, в основі якого буде розміщений Останній універсальний спільний предок — LUCA (Last universal common ancestor). Цей універсальний спільний предок є попередником усіх організмів, що живуть зараз. Чи могли у нього бути свої предки? Безсумнівно. Тоді ці організми теж є універсальними спільними предками — UCA. Останній організм у ланцюжку «універсальних спільних предків» учені й іменують останнім універсальним спільним предком, або просто LUCA. Появі LUCA передувала еволюція, про яку вчені практично нічого не знають. Точніше, її неможливо реконструювати, порівнюючи між собою організми, які нині існують, бо усі еволюційні гілки урешті-решт зійдуться на LUCA. Ми можемо лише здогадуватися, як LUCA міг виникнути, хоча його «вигляд» можна уявити собі достатньо точно. Ба більше, у процесі такої «еволюції від LUCA» могли виникнути еволюційні гілки від інших універсальних спільних предків (UCA), паралельні тим, що виникли від LUCA (рис. 14.1). Про розвиток цих паралельних гілок ми практично не можемо нічого дізнатися, оскільки усі їх нащадки вимерли ще на етапі одноклітинних організмів мільйони років тому....

Неклітинні неорганізми

10 Клас

Із попереднього параграфу ви знаєте, що віруси зустрічаються усюди. Але «живими» вони стають тоді, коли потрапляють до організму хазяїна. Насправді кожний організм на Землі має свої вірусні інфекції. Попри те, існують різні форми одного вірусу — штами. Виникнення нових штамів вірусів часто пов’язане з розвитком епідемій. Так, штам грипу A H1N1 спричинив пандемію1 свинячого грипу у 2009-2010 роках, тоді як штам грипу A H3N2 був причиною пандемії гонконгеького грипу в 1968-1969 роках, що забрала життя 34 тис. людей. Далі ми побіжно розглянемо неосяжне різноманіття вірусів, що трапляються в природі. Бактеріофаг Т4, використовуючи складно влаштований капсид, уражає бактерії Бактеріофаги — віруси, що є паразитами бактерій, відрізняються своїм різноманіттям. Бактеріофаг Т4 має один із найскладніше побудованих капсидів серед вірусів (рис. 13.1, А). Завдяки здатності вбивати бактерії, бактеріофаги знайшли своє застосування в кількох галузях. Першочергово доведено можливість використання бактеріофагів для лікування бактеріальних інфекцій. Таке застосування фагів отримало назву фаготерапія. Бактеріофаги мають ряд переваг над антибіотиками, що зараз широко застосовуються для знищення бактерій. Вони атакують лише певний вид бактерій, ніяк не впливаючи на корисну бактеріальну мікрофлору організму. Ймовірність виникнення побічних ефектів при фаготерапії значно менша, ніж при антибіотикотерапії. Також бактеріофаги можуть уводитися в невеликих концентраціях, оскільки здатні розмножуватися в уражених бактеріях. З іншого боку оскільки бактеріофаг діє лише на штам бактерій певного виду, то для лікування застосовують «коктейль» із різних фагів. Окрім того, виробництво фагів налагодити важче, ніж антибіотиків....

Будова і функціонування вірусів

10 Клас

У попередніх параграфах ми розглянули величезне різноманіття організмів, які населяють нашу планету. Вони мають різну будову і відрізняються процесами, що в них відбуваються. Але при цьому всі організми характеризуються спільними властивостями. По-перше, усі вони мають клітинну будову. Ба більше, їхні клітини здатні самостійно здійснювати важливий процес — біосинтез білка: у них є всі компоненти апарата білкового синтезу. По-друге, усі клітинні організми мають складний метаболізм, завдяки якому вони перетворюють енергію і синтезують власні хімічні компоненти. І, зрештою, організми є реплікаторами — системами, здатними утворювати собі подібних, передаючи їм свій спадковий матеріал. Але організми це не єдині реплікатори, що існують на нашій планеті. Поряд з ними є й інші, набагато простіше побудовані реплікатори — віруси. На відміну від організмів, у вірусів немає власних систем перетворення енергії й утворення біомолекул. Вони використовують відповідні системи клітини, у якій розвиваються, тобто є внутрішньоклітинними паразитами. При цьому вони не здатні самостійно утворювати білки, оскільки не мають власних рибосом. Через це деякі вчені визначають віруси як безрибосомні реплікатори. Усі віруси мають власний генетичний матеріал, який може бути представлений молекулами ДНК чи РНК. Деякі віруси зберігають спадкову інформацію тільки у формі РНК і ніколи не використовують ДНК для цього (наприклад, вірус грипу). Інші використовують лише ДНК, як, наприклад, вірус герпесу. Треті ж на різних етапах життєвого циклу можуть використовувати як молекулу ДНК, так і молекулу РНК. Така ситуація спостерігається у вірусу імунодефіциту людини....

Хордові тварини

10 Клас

Серед усіх численних і різноманітних тварин особливе місце відводять хордовим — групі, яка вже сотні мільйонів років домінує як у воді, так і на суходолі. Найвищі позиції в харчових ланцюгах зайняті, як правило, хордовими тваринами. Давайте з’ясуємо, які особливості будови дозволили хордовим досягти такого екологічного й еволюційного успіху. Оскільки ця група надзвичайно різноманітна, ми розглянемо план будови можливого предка хордових (рис. 11.1, А). Усі хордові мають розвинений внутрішній скелет, основу якого складає хорда — щільний тяж сполучної тканини, до якої прикріплюються м’язи. У більшості хордових тварин хребет почав виконувати функції хорди. Внутрішній скелет має ряд значних переваг у порівнянні зі зовнішнім. По-перше, він значно легший і займає «менше місця» в тілі. По-друге, внутрішній скелет не обмежує ріст організму. По-третє, внутрішній скелет, «обтягнутий шкірою», виявляється значно міцнішим за «голий» зовнішній скелет1. Над хордою знаходиться нервова трубка, а під нею — кишківник. Передній відділ кишківника — глотка, пронизана з обох боків парними отворами — зябровими щілинами, крізь які тече вода, що потрапляє до ротової порожнини. Такий «наскрізний» потік крізь зяброві щілини дозволяє ефективно поглинати з неї кисень. У задній частині тіла, за анальним отвором, продовжується хвіст, який хордові використовують для руху у воді. 1 Якщо ви вдарите по кухолеві молотком, то він, скоріш за все, розіб’ється. Це пов’язано з тим, що вся сила удару буде прикладена до маленької області контакту молотка й кухля. Якщо обтягнути кухоль шкірою, то він стане стійкішим: сила удару буде розподілена по більшій площині завдяки наявності амортизатора....

Безхребетні тварини

10 Клас

Тварини, мабуть, є однією з найуспішніших груп еукаріотів. Вони захопили всі можливі місця існування й набули найрізноманітніших форм. Проте тварини мають спільні властивості: усі вони є багатоклітинними гетеротрофами. Через відсутність у їхніх клітинах твердої клітинної стінки, вони здатні активно рухатися навіть тоді, коли ведуть прикріплений спосіб життя. Також тваринам властиве особливе різноманіття типів клітин, які утворюють організм. Вони формують складні ансамблі — тканини, що складаються з різноманітних клітин і міжклітинного простору. Так, саме міжклітинна речовина багато в чому визначає механічні властивості таких структур, як кістка, хрящ і сухожилля. Усіх тварин об'єднують у монофілетичну групу, якій традиційно надають ранг царства. Еволюційні зв’язки різних груп тварин між собою складні та постійно переглядаються, залишаючись предметом запеклих дискусій між ученими. В зоології виділяють до тридцяти типів тварин у складі царства. У цьому параграфі ми коротко ознайомимося лише з деякими з них. Губки — найпростіші за будовою тварини Одними з найпростіших за будовою тваринами є губки. Здебільшого вони мешкають у морських водах, де ведуть прикріплений спосіб життя, фільтруючи воду (рис. 10.1, А, Б). Тіло губок складається з мережі каналів і камер, вистелених клітинами з джгутиками, які й створюють потік води через тіло губки та захоплюють поживні частинки з води (рис. 10.1, В). Тіло губки шорстке на дотик, бо має внутрішній скелет із голок і волокон різного хімічного складу. Губки беруть участь у очистці водойм від забруднення: одна губка за годину може пропускати крізь себе понад сотню літрів води!...

Гриби

10 Клас

Іще однією успішною групою еукаріотів, що досягла багатоклітинної організації, є гриби. Як і тварини, гриби є гетеротрофами, тобто такими, які змушені споживати готові органічні речовини з довкілля. Але на відміну від тварин, клітини грибів укриті щільною клітинною стінкою, основу якої складає вуглевод хітин. Через наявність такої стінки гриби нездатні поглинати частинки їжі й змушені всмоктувати розчинені поживні речовини поверхнею тіла. Зазвичай для забезпечення такого живлення вони використовують зовнішнє травлення: гриби виділяють у довкілля травні ферменти, що розщеплюють великі молекули їжі на дрібні, які можуть пройти крізь клітинну стінку й цитоплазматичну мембрану. Грибниця з ниток утворює тіло багатоклітинних грибів Тіло грибів, зазвичай, становить сукупність розгалужених багатоядерних ниток — грибницю, або міцелій (рис. 9.1). Часто всередині ниток міцелію — гіф — є перетинки, що поділяють нитки на сегменти. Якщо кожен сегмент містить одне або кілька ядер — тоді стверджують, що грибниця має клітинну будову. Але варто пам’ятати: цитоплазми сусідніх клітин сполучаються за допомогою йор, тому така «багатоклітинна» будова не є еквівалентною багатоклітинності тварин. Часто формування спор у грибів пов’язане з розвитком особливої структури — плодового тіла, утвореного щільно переплетеними нитками грибниці, до яких прикріплені органи спороношення. «Гриби», які ми збираємо в лісі, вирощуємо в теплицях і їмо, по суті, є плодовими тілами, які підіймаються над землею, у той час як більша частина гриба залишається прихованою в ґрунті....

Рослини

10 Клас

Рослини є однією з найуспішніших груп еукаріотів. їхні хлоропласти, утворені в результаті первинного ендосимбіозу, мають оболонку яка складається із двох мембран. їхні клітини вкриті щільною клітинною стінкою, основу якої становить целюлоза. Всі рослини є багатоклітинними організмами. Перші їхні представники були родичами сучасних зелених водоростей, що освоїли наземні місця існування. Багато рослин, зокрема такі як елодея і кушир (рис. 8.1), вторинно повернулися до водного способу життя, однак їх не варто плутати з водоростями, а краще називати «водними рослинами». Особливістю життєвого циклу рослин є послідовна зміна двох поколінь: статевого — гаметофіту і нестатевого — спорофіту (рис. 8.2). Гаметофіт є гаплоїдним і виробляє статеві клітини — гамети — шляхом мітозу. Гамети зливаються одна з одною та формують диплоїдну зиготу, з якої розвинеться диплоїдний спорофіт. Своєю чергою, спорофіт утворює гаплоїдні спори шляхом мейозу. Неважко здогадатися, що гаплоїдні спори дають початок гаметофіту та замикають життєвий цикл. Найімовірніше, у перших рослин гаметофіт і спорофіт мали приблизно однакову будову й займали рівні частини життєвого циклу. Однак, упродовж еволюції одні рослини пішли шляхом зменшення гаметофіту і домінування спорофіту — вони дали початок судинним рослинам. У життєвому циклі інших, навпаки, став домінувати гаметофіт. Ці рослини дали початок сучасним мохам....

Будова, походження і різноманіття еукаріотів

10 Клас

Клітини представників домену Еукаріоти значно більші за прокаріотичні клітини і мають складнішу будову (рис. 7.1). Типова еукаріотична клітина має лінійні розміри від 20 до 100 мікрометрів. Вона оточена плазматичною мембраною, під якою розміщені цитоплазма і ядро. Ядро відповідає за зберігання генетичного матеріалу і початкові етапи синтезу білків. Цитоплазма оточує ядро з усіх боків. У ній можна виокремити цитозоль — рідку фракцію, та органели — оформлені структури, що спеціалізуються на виконанні тієї чи іншої функції. Найпомітніші ті органели, що оточені власного мембраною. До них належить ендоплазматичний ретикулум — неперервна сітка трубочок і цистерн, що пронизують цитоплазму й беруть участь в утворенні мембран (синтезі мембранних ліпідів і білків), секреції й дезактивації токсинів. Апарат Гольджі є місцем сортування й модифікації мембранних і секреторних білків клітини. Лізосоми — це травні органели, які містять ферменти, потрібні для розщеплення поживних речовин і утилізації відпрацьованих частин клітини. Транспортні везикули (пухирці) переносять речовини від однієї органели до іншої і від органел до клітинної мембрани. Також у клітинах можуть міститися різноманітні вакуолі (травні, скоротливі, з клітинним соком). Мітохондрії є енергетичними станціями клітини й оточені двома мембранами. У них відбувається синтез АТФ. Також вони мають власний генетичний апарат і здатні розмножуватися всередині клітини. У фотосинтезувальних еукаріотів у клітинах містяться пластиди (хлоро, хромо- і амілопласти). Деякі внутрішньоклітинні структури не оточені мембраною — до них належать, наприклад, цитоскелет — сітка білкових ниток, які виконують опорну й рухову функції, а також рибосоми — макромолекулярні комплекси, утворені з білків і РНК, що беруть участь у синтезі білкових молекул....

Навігація

 

Template not found: /templates/Red/reklamaundersite.tpl