Войти
Закрыть

Хромосомна теорія спадковості. Кросинговер

10 Клас

Після відкриття законів Г. Менделя в науці поступово почали накопичуватися факти про те, що в деяких випадках розщеплення ознак відбувається не так, як це передбачали. Виявилося, що гени, які розташовані в одній хромосомі, успадковуються разом (зчеплено). Такі гени назвали зчепленими генами. А разом усі гени, які розташовані в одній хромосомі, утворюють групу зчеплення. Кількість груп зчеплення в організмів певного виду дорівнює кількості хромосом в одинарному (гаплоїдному) наборі, який міститься у статевих клітинах. Наприклад, у дрозофіли їх 4, у кішки — 19, а в людини — 23. Утворення гамет у разі зчепленого успадкування Прикладом зчепленого успадкування генів може бути успадкування двох ознак у мушки дрозофіли — кольору тіла й форми крил. Чорний колір (а) і зачаткові крила (b) визначаються рецесивними алелями, а сіре тіло (А) і довгі крила (В) — домінантними. Гени, які визначають ці ознаки, розташовані поряд в одній хромосомі. Що буде у випадку, якщо ми схрестимо самку дрозофіли, яка є рецесивною гомозиготою за цими ознаками (генотип aabb), із самцем, у якого в одній хромосомі розташовані два домінантні алелі, а в іншій — два рецесивні (генотип AaBb)? Якби ці ознаки успадковувалися незалежно, то у гетерозиготної мухи мали б утворитися чотири типи гамет: Ab, aB, АВ і ab. Але ознаки успадковуються зчеплено, і тому утворюється тільки два типи гамет: АВ і ab (у самців кросинговер не відбувається). Відповідно, нащадки від цього схрещування будуть мати тільки два фенотипи: сіре тіло з довгими крилами й чорне тіло із зачатковими крилами (мал. 62.1)....

Взаємодія алелів. Множинний алелізм

10 Клас

Як ви вже знаєте, в організмі диплоїдних еукаріотів кожний ген, розташований в аутосомі, представлений у двох екземплярах. Також вам відомо, що можуть існувати різні варіанти генів, які називаються алелями. Зрозуміло, що в організмі одночасно може бути тільки два різні алелі. Але якщо ми розглянемо не одну особину, а цілу популяцію, то виявиться, що кількість варіантів одного гена може бути набагато більшою. Наявність двох і більше алелів у популяції має назву множинного алелізму. Це явище виникає через те, що в організмах постійно відбуваються мутації. І мутації, які сталися на різних ділянках гена, можуть створювати різні його варіанти. Між собою алелі можуть взаємодіяти по-різному. Наприклад, як у випадку груп крові в людини, два алелі можуть бути кодомінантними між собою і домінантними по відношенню до третього алеля. Або алелі можуть утворювати ряд за здатністю домінувати. Так, ген С у кроликів відповідає за інтенсивність забарвлення шерсті (мал. 61.1). Один з його алелів (алель повного забарвлення) є домінантним для всіх інших алелів і забезпечує рівномірне густе забарвлення всього тіла. Другий алель (шиншилового забарвлення) є рецесивним до першого алеля і домінантним для інших алелів. Він забезпечує менш інтенсивне забарвлення шерсті по всьому тілу. Третій алель (гімалайського забарвлення) забезпечує світле забарвлення всього тіла з темними плямами на деяких ділянках (лапи, вуха тощо). Він є рецесивним до двох перших алелів і домінантним для наступного. Останній алель цього гена (алель альбінізму) визначає відсутність забарвлення по всій шерсті. Він є рецесивним по відношенню до всіх інших....

Закономірності успадкування. Закони Г. Менделя

10 Клас

Основи сучасного гібридологічного методу створив Грегор Мендель (мал. 60.1). Він досліджував наслідування різних ознак гороху. Провівши математичні підрахунки розподілу різних варіантів ознак у нащадків, Г. Мендель зміг установити закономірності успадкування ознак і сформулював свої закони. Саме Г. Мендель запропонував «задатки» ознак (гени) позначити літерами латинського алфавіту. Закон чистоти гамет та цитологічна основа законів Г. Менделя У своїх дослідах Г. Мендель упевнився, що і батьківський, і материнський організми мають два варіанти (алеля) спадкового «задатку» (гена). І кожному зі своїх нащадків вони передають тільки один з них. Це правило отримало назву закону чистоти гамет. Коли пізніше вивчили будову ядра клітин живих організмів, то виявили в них парні хромосоми. Ці структури розходилися поодинці в дочірні клітини під час кожного поділу. Тому вони чудово підходили під роль носія генів. І дійсно, саме хромосоми містять ДНК, у якій і розміщено гени клітин. Схеми схрещування Досліди зі схрещування в генетиці записують у вигляді схем схрещування, використовуючи генетичну символіку. У першому рядку записують генотипові формули батьків, у другому — типи їхніх гамет, у третьому — генотипи першого покоління і т. д. Якщо генів кілька, то вони у запису розташовуються в алфавітному порядку. Домінантний алель завжди пишеться перед рецесивним алелем того ж гена....

Генетична термінологія. Типи схрещувань

10 Клас

Гібридологічний аналіз — це дослідження характеру успадкування ознак за допомогою системи схрещувань. Його основою є гібридизація, яка полягає в схрещуванні організмів, що відрізняються між собою за однією чи кількома спадковими ознаками, наприклад за забарвленням насінин, формою крил, довжиною ніг тощо. Нащадків, одержаних від такого схрещування, називають гібридами. Для проведення дослідів з генетики й селекції вчені здійснюють схрещування організмів і досліджують батьківські організми та організми першого, другого й наступних поколінь. Залежно від кількості генів, які аналізують, розрізняють моногібридне (один ген), дигібридне (два гени) і полігібридне (багато генів) схрещування. Під час вивчення успадкування, зчепленого зі статтю, часто використовують зворотне схрещування, коли ознака, яка вивчається, в першому варіанті схрещування є у самки, а в другому — у самця. Генетична символіка Для запису систем схрещування та розв’язання генетичних задач у генетиці використовують спеціальну систему позначень і символів. Якщо генів кілька, то вони в запису розташовуються в алфавітному порядку. Домінантний алель завжди пишуть перед рецесивним алелем того ж гена....

Генетика як наука. Методи генетики

10 Клас

Генетика (від грец. genetic — походження) — наука про спадковість і мінливість живих організмів. Цей термін було запропоновано англійським генетиком В. Бетсоном 1905 року. В основу генетики було покладено закономірності спадковості, які виявив Г. Мендель під час вивчення різних сортів і гібридів гороху в 1860-х роках. Народження генетики відносять до 1900 року, коли Х. де Фріз, К. Коренс і Є. Чермак повторно відкрили закон Г. Менделя, але розвиток генетики почався набагато раніше. Уже в давні часи люди помічали певні закономірності успадковування ознак і намагалися застосовувати їх для виведення нових сортів і порід. Тому перший період розвитку генетики з давніх часів до середини XIX століття був періодом накопичення інформації про закономірності спадковості й мінливості. Другий період (1865—1900) — це період виникнення генетики як науки. Він розпочався з виходу роботи Г. Менделя і закінчився перевідкриттям його законів. Третій період розвитку (1900—1953) було присвячено вивченню генетичних процесів на клітинному рівні. Саме тоді було сформовано хромосомну теорію спадковості й виявлено роль хромосом. А після 1953 року (з моменту встановлення особливостей структури ДНК) розпочався сучасний період розвитку генетики, коли дослідження переважно проводяться на молекулярному рівні. Залежно від об’єкта дослідження виділяють генетику рослин, тварин, мікроорганізмів, людини тощо. Генетика як наука виникла внаслідок практичних потреб. Під час розведення домашніх тварин і культурних рослин здавна використовували гібридизацію порід або сортів, які відрізнялися між собою за певними ознаками. Порівнюючи гібриди з вихідними формами, люди давно помітили деякі особливості успадкування ознак. А поєднання багаторічних спостережень і потреби підвищення врожайності та ефективності сільського господарства стало причиною бурхливого розвитку генетики у XX столітті....

Гени й геноми

10 Клас

Кожний ген є ділянкою молекули ДНК. Він відповідає за утворення однієї або кількох ознак організму. Але більшість ознак утворюються в результаті взаємодії кількох генів. В яких структурах розташовані гени? У прокаріотів вони зосереджені у великій кільцевій молекулі ДНК (це нуклеоїд або бактеріальна хромосома). Крім того, вони є в невеликих кільцевих молекулах ДНК — плазмідах. В еукаріотів гени містяться в хромосомах ядра, мітохондріях і пластидах. Відповідно до місця розташування гени еукаріотів поділяють на ядерні, мітохондріальні та гени пластид. Усі гени мають однакову схему будови. Вони складаються з кількох ділянок. Головною ділянкою будь-якого гена є та, яка містить інформацію про будову молекули білка або РНК (продукту гена). Це кодуюча частина гена. Інші ділянки гена — некодуючі. Вони не містять інформації про будовумолекул, синтез яких забезпечує ген, але відповідають за роботу гена. Некодуючими ділянками гена є промотор і термінатор. Промотор — це ділянка гена, яка позначає місце, де починається синтез РНК, термінатор — де закінчується синтез. Крім того, до складу гена входять регуляторні ділянки, які регулюють його роботу. Гени прокаріотів Гени прокаріотів мають відносно просту структуру. Частіше за все вони містять інформацію тільки про одну структуру — молекулу білка або РНК. Гени прокаріотичних організмів часто організовані в оперони. Оперон — структура, яка складається з кількох структурних генів (мал. 57.1). Структурні гени в опероні розташовані поряд і мають на всіх один спільний промотор, один спільний термінатор і один спільний оператор, який регулює його роботу....

Шляхи передачі інформації в живих системах

10 Клас

Френсіс Крік 1958 року запропонував так звану центральну догму молекулярної біології. Ця догма стверджувала, що потік інформації в живих організмах відбувається тільки в напрямку від ДНК до РНК, а потім до білків. Але після подальших досліджень догму було відредаговано, і в сучасному формулюванні вона має такий вигляд: потік інформації в живих організмах може відбуватися між нуклеїновими кислотами та в напрямку від нуклеїнових кислот до білків, але не може проходити від білків до нуклеїнових кислот (мал. 56.1). З ДНК на ДНК та в напрямку ДНК— РНК—білок інформація передається в усіх клітинах живих організмів (під час реплікації, транскрипції і трансляції). Передачу інформації з РНК на РНК використовують деякі віруси. А передача інформації з РНК на ДНК використовується деякими вірусами і, в деяких випадках, у клітинах живих організмів (так звана зворотна транскрипція). З процесами реплікації, транскрипції і трансляції ви вже знайомі. У процесі зворотної транскрипції події відбуваються у зворотному порядку порівняно зі звичайною транскрипцією. Здійснює його також комплекс ферментів, головним з яких є фермент РНК-залежна ДНК-полімераза (її часто називають ревертазою або зворотною транскриптазою). Цей фермент будує ланцюжок ДНК за зразком ланцюжка РНК. Принцип побудови нової молекули також базується на явищі комплементарності, але відповідність у цьому випадку дещо інша порівняно з транскрипцією....

Обмін речовин і енергії

10 Клас

У клітинах одночасно відбуваються процеси енергетичного та пластичного обміну. Вони пов’язані між собою потоками речовин і енергії (мал. 55.1). Головну роль у поєднанні анаболічних і катаболічних процесів відіграє АТФ. Процеси анаболізму і катаболізму перебувають в організмі або в стані динамічної рівноваги, або з переважанням одного з них. Переважання анаболічних процесів над катаболічними призводить до зростання, накопичення маси тканин, а переважання катаболічних процесів веде до часткового руйнування тканинних структур, виділення енергії. Стан рівноважного або нерівноважного співвідношення анаболізму й катаболізму залежить від віку (переважання анаболізму в дитячому віці, рівновага у зрілому, переважання катаболізму в старості), стану здоров’я, фізичного або психоемоційного навантаження. Перетворення енергії в живій клітині Внутрішні метаболічні процеси супроводжуються перетвореннями одних форм енергії на інші. Так, наприклад, хімічна енергія глюкози перетворюється у ході клітинного окиснення частково на тепло, частково — на енергію макроергічних зв’язків АТФ. За рахунок гідролізу АТФ може відбуватися перенесення речовин з ділянки з меншою концентрацією до ділянки з більшою (осмотична робота), перенесення йонів у місце більш високого електричного потенціалу (електрична робота), в організмі тварини — скорочення м’язів (механічна робота). При цьому відбувається перетворення частини хімічної енергії АТФ на теплову, осмотичну, електричну та механічну енергію. З розвитком у XIX—XX ст. термодинаміки — науки про взаємоперетворення теплоти й енергії — стало можливо кількісно розраховувати перетворення енергії в біохімічних реакціях і передбачати їх напрямок....

Взаємозв'язок метаболічних шляхів

10 Клас

Обмін речовин в організмі людини відбувається не хаотично. Він інтегрований і тонко настроєний. Усі перетворення органічних речовин тісно пов’язані один з одним. Наприклад, у разі надмірного споживання жирів вони можуть використовуватися для утворення глюкози. Білки й вуглеводи можуть перетворюватися на ліпіди, а вуглеводи в деяких випадках можуть перетворюватися на білки. Взаємоперетворення окремих класів речовин можливі завдяки циклу трикарбонових кислот, в якому сполучаються всі основні шляхи розпаду й синтезу речовин (мал. 54.1). Взаємоперетворення здійснюються через ключові метаболіти, які є спільною ланкою на шляхах розпаду або синтезу. До таких метаболітів належать піруват, ацетил-КоА, фосфогліцерат, метаболіти циклу Кребса. Вуглеводи в результаті гідролізу утворюють моносахариди (глюкозу), які здатні перетворюватися на тріози, зокрема піровиноградну кислоту, що надходить до циклу трикарбонових кислот. І, навпаки, тріози здатні утворити глюкозу. Білки в результаті гідролізу утворюють різні амінокислоти, які в процесі окисного дезамінування дають амоніак і кетокислоти. Кетокислоти надходять у цикл трикарбонових кислот. Навпаки, піровиноградна кислота, а також кетокислоти циклу трикарбонових кислот (а-кетоглутарова, фумарова, щавелевооцтова) перетворюються на амінокислоти, які організм використовує в процесі біосинтезу білків....

Навігація