Войти
Закрыть

Загальна характеристика обміну речовин і перетворення енергії в клітинах

10 Клас

• Загальна характеристика обміну речовин у клітині. Окремі клітини та організми належать до відкритих систем. Це означає, що їхнє існування можливе лише завдяки надходженню в них із зовнішнього середовища поживних речовин, їхніх перетворень та виведення назовні продуктів життєдіяльності. Сукупність цих процесів має назву обмін речовин, або метаболізм (від грец. метаболе - переміна). В організмах одночасно відбуваються процеси двох типів. До першого типу належать надходження з навколишнього середовища, засвоєння і накопичення речовин, які використовуються для синтезу сполук, необхідних для окремих клітин та усього організму. Сукупність реакцій синтезу, які забезпечують розвиток клітин та організмів, поновлення їхнього хімічного складу, називають пластичним обміном (від грец. пластос - створений). На здійснення цих процесів організм витрачає певну кількість енергії, необхідної для утворення хімічних зв’язків тощо. До другого типу належать процеси розкладу речовин. Вони супроводжуються виділенням енергії, необхідної зокрема для забезпечення пластичного обміну. Сукупність реакцій розкладу складних сполук в організмі, що супроводжуються виділенням енергії, називають енергетичним обміном. Процеси розкладу сполук не завжди врівноважені процесами їхнього синтезу. Так, під час росту клітини чи організму процеси синтезу переважають над процесами розкладу. Завдяки цьому забезпечується накопичення необхідних сполук і ріст організмів. Під час інтенсивної фізичної роботи, у разі нестачі поживних речовин або старіння, навпаки, процеси розкладу переважають над процесами синтезу. Якщо втрати біомаси та енергії не будуть компенсовані харчуванням, то організм поступово виснажуватиметься, що врешті-решт призведе до загибелі....

Мейоз

10 Клас

• Як утворюються статеві клітини з гаплоїдним набором хромосом? Ви вже знаєте, що процес запліднення супроводжується злиттям ядер чоловічої і жіночої статевих клітин, які здебільшого мають гаплоїдний набір хромосом. При цьому внаслідок злиття двох гаплоїдних статевих клітин (гамет) при заплідненні хромосомний набір зиготи подвоюється, тобто стає диплоїдним. А як виникають гаплоїдні клітини? Встановлено, що при їхньому утворенні здійснюється особлива форма поділу еукаріотичних клітин, який забезпечує зменшення хромосомного набору статевих клітин удвічі порівняно з нестатевими. • Мейоз (від грец. мейозіс - зменшення) - особливий спосіб поділу еукаріотичних клітин, унаслідок якого їхній хромосомний набір зменшується вдвічі. Під час мейозу відбуваються два послідовні поділи, інтерфаза між якими вкорочена або відсутня. Кожний з цих поділів, як і мітоз, складається із чотирьох послідовних фаз. Перший мейотичний поділ дістав назву редукційний (від лат. редуцере - повертати, відсувати назад). Під час профази першого мейотичного поділу (профаза І) хромосоми ущільнюються, набуваючи вигляду паличкоподібних структур (мал. 25.1). Потім гомологічні хромосоми зближуються і ніби злипаються (кон’югують) між собою. Під час кон’югації може відбуватися кросинговер (від англ. кросинг овер - перехрест): обмін ділянками між гомологічними хромосомами (мал. 25.2). Унаслідок кросинговеру виникають нові комбінації спадкового матеріалу, і тому гомологічні хромосоми часто відрізняються за спадковою інформацією. Тому кросинговер слугує джерелом спадкової мінливості. Наприкінці профази гомологічні хромосоми роз’єднуються (але залишаються сполученими в місцях, у яких відбувається обмін ділянками), зникають ядерця, руйнується ядерна оболонка і починає формуватися веретено поділу....

Клітинний цикл. Мітоз

10 Клас

• Клітинний цикл. Як ви пам’ятаєте, клітини зазвичай розмножуються поділом. Період існування клітини між початками її двох послідовних поділів або ж від початку поділу до загибелі називають клітинним циклом (мал. 24.1). Тривалість клітинного циклу у різних організмів неоднакова: у бактерій за оптимальних умов вона становить усього 20-30 хв, у клітин еукаріотів - 10-80 годин і більше (наприклад, інфузорія-туфелька поділяється кожні 10-20 годин). Клітинний цикл складається з періодів поділу та проміжку до початку наступного поділу - інтерфази. Інтерфаза (від лат. інтер - між і грец. фазіс - поява) - період між двома послідовними поділами клітини або від завершення останнього поділу до загибелі клітини. В інтерфазі клітина росте, синтезує органічні сполуки та запасає енергію у вигляді особливого типу хімічного (макроергічного) зв’язку. В інтерфазі розрізняють три послідовні етапи (періоди). Процеси біосинтезу інтенсивно відбуваються на синтетичному етапі. У цей час подвоюються молекули ДНК, хроматиди, центріолі, поділяються мітохондрії та пластиди тощо. Етап між завершенням попереднього поділу і синтетичним етапом називають передсинтетичним, а між завершенням синтетичного етапу і початком наступного поділу - післясинтетичним (мал. 24.1). Тривалість інтерфази зазвичай не перевищує 90 % часу всього клітинного циклу. Досягнення клітиною певних розмірів часто спонукає її до початку наступного поділу. Основним способом поділу еукаріотичних клітин є мітоз (мал. 24.2) (від грец. мітос - нитка). Він супроводжується ущільненням хромосом й утворенням особливого веретена поділу, яке забезпечує впорядкований розподіл спадкового матеріалу дочірніми клітинами. • Фази мітотичного поділу. Мітоз складається з чотирьох послідовних фаз: профази, метафази, анафази і телофази (мал. 24.2) та триває від кількох хвилин до 2-3 годин. Профаза (від грец. про - перед, раніше та фазіс - прояв) починається з ущільнення ниток хроматину: хроматиди вкорочуються і потовщуються (спіралізуються) (мал. 24.2, I). Завдяки цьому під світловим мікроскопом можна розглянути будову хромосом (зокрема, знайти первинну перетяжку) і підрахувати їхню кількість. Поступово зменшуються і зникають ядерця; зазвичай під час поділу ядерна оболонка розпадається (за винятком деяких одноклітинних тварин, водоростей і грибів), внаслідок чого хромосоми потрапляють до цитоплазми (мал. 24.2, II). Водночас починає формуватися веретено поділу....

Будова клітин прокаріотів. Гіпотези походження еукаріотів

10 Клас

Прокаріоти (від лат. про - перед, замість та грец. каріон - ядро) - надцарство організмів, до складу якого входять царства Археї (Архебактерії) та Справжні бактерії (Еубактерії). До справжніх бактерій належать власне бактерії та ціанобактерії (застаріла назва - «синьо-зелені водорості»). Археї (Архебактерії) - група прокаріотів, які від справжніх бактерій відрізняються особливостями будови та процесів життєдіяльності. Зокрема, їхні клітини мають менші розміри, а кільцева молекула ДНК зазвичай оточена особливими білками - гістонами та дещо нагадує хромосому еукаріотичних клітин. Серед архей переважають гетеротрофи, однак також відомі автотрофи - хемосинтетики (отримують енергію для біосинтезу внаслідок екзотермічних окисно-відновних реакцій сполук Сульфуру) та фотосинтетики; останні не містять хлорофілу, і процес фотосинтезу у них дуже мало вивчений. Клітини прокаріотів мають поверхневий апарат і цитоплазму, в якій розташовані нечисленні органели та різноманітні включення. Прокаріотичні клітини не мають більшості органел (мітохондрій, пластид, ендоплазматичної сітки, комплексу Гольджі, лізосом, клітинного центру тощо). Прокаріоти - мікроскопічні організми. Розміри їхніх клітин зазвичай варіюють у межах 0,2-30 мкм у діаметрі або завдовжки. Інколи трапляються і більші за розмірами клітини. Наприклад, деякі види роду Спірохета можуть сягати до 250 мкм завдовжки. Форма клітин прокаріотів різноманітна: куляста, паличкоподібна, у вигляді коми або спірально закрученої нитки тощо (мал. 23.1). Усі прокаріоти - одноклітинні організми, клітини яких після поділу часто здатні залишатися сполученими своїми стінками та утворювати колонії у вигляді ниток, грон тощо. Іноді колонії оточені спільною слизовою оболонкою - капсулою. У колоніальних ціанобактерій контакти між сусідніми клітинами мають вигляд мікроскопічних канальців, заповнених цитоплазмою....

Рибосоми. Органели руху. Клітинний центр

10 Клас

• Рибосоми (від рибонуклеїнова кислота та грец. сома - тільце) - позбавлені поверхневої мембрани органели, які беруть участь у синтезі білків. Вони трапляються в клітинах як прокаріотів, так і еукаріотів, мають вигляд сферичних тілець, що складаються з двох різних за розмірами частин - субодиниць: великої та малої (мал. 22.1). Кожна із субодиниць складається зі сполучених між собою рРНК і білків. Субодиниці рибосом можуть роз’єднуватися після завершення синтезу білкової молекули і знову сполучатися між собою перед його початком. Субодиниці утворюються в ядерці: на молекулі ДНК синтезується рРНК, яка сполучається з особливими рибосомними білками, що надходять із цитоплазми. Готові субодиниці транспортуються до цитоплазми. Рибосоми мітохондрій і пластид менші від цитоплазматичних за розмірами, але схожі за будовою. Число рибосом у клітині залежить від інтенсивності процесів біосинтезу білків. У клітинах багатьох одноклітинних і багатоклітинних тварин і рослин є органели руху: несправжні ніжки (псевдоподії), джгутики і війки. • Псевдоподії (від грец. псевдос - несправжній і подос - нога) - непостійні вирости цитоплазми клітин деяких одноклітинних (наприклад, амеб, форамініфер, радіолярій) (мал. 22.2) або багатоклітинних тварин (наприклад, лейкоцити). Кількість і форма псевдоподій досить мінливі. В утворенні псевдоподій беруть участь елементи цитоскелета....

Двомембранні органели: мітохондрії та пластиди

10 Клас

• Мітохондрії (від грец. мітос - нитка і хондріон - зерно) - органели клітин більшості видів рослин, грибів і тварин. Їх немає лише в деяких одноклітинних еукаріотів, які мешкають у безкисневому середовищі, - анаеробів. Мітохондрії слугують своєрідними клітинними «генераторами енергії». Вони мають вигляд кульок, паличок, інколи розгалужених ниток (завдовжки 0,5-10 мкм і більше). Число цих органел у клітинах різних типів може коливатися від 1 до 100 000 і більше. Воно залежить від того, наскільки активно відбуваються процеси обміну речовин і перетворення енергії. Так, клітина значних розмірів амеби Хаос містить до 500 000 мітохондрій, тоді як у дрібній клітині паразитичних джгутикових - трипаносом (збудників сонної хвороби людини) є лише одна велетенська розгалужена мітохондрія. Зовнішня мембрана мітохондрії гладенька, а внутрішня - утворює вгини всередину органели - кристи (мал. 21.1). Кристи мають вигляд дископодібних, трубчастих чи пластинчастих утворів, що часто розгалужуються. На поверхні крист, що межує з внутрішнім середовищем мітохондрії, є особливі грибоподібні білкові утвори - АТФ-соми (від грец. сома - тіло) (мал. 21.2). Вони містять комплекс ферментів, необхідних для синтезу АТФ. Внутрішній простір мітохондрій заповнений напіврідкою речовиною - матриксом. Там містяться рибосоми, молекули ДНК, іРНК, тРНК тощо та синтезуються білки, що входять до складу внутрішньої мембрани. Основна функція мітохондрій - синтез АТФ. Цей процес відбувається за рахунок енергії, яка вивільняється під час окиснення органічних сполук. Початкові реакції відбуваються в матриксі, а наступні, зокрема синтезу АТФ, - на внутрішній мембрані мітохондрій. • Пластиди (від грец. пластидес - виліплений, сформований) - органели клітин рослин і деяких одноклітинних тварин (наприклад, евглени зеленої). Відомо три типи пластид - хлоропласти, хромопласти, лейкопласти, які різняться за забарвленням, особливостями будови та функціями. Хлоропласти (від грец. хлорос - зелений) - пластиди, зазвичай забарвлені в зелений колір завдяки наявності пігменту хлорофілу. Але в клітинах певних груп водоростей (червоних, бурих тощо) їхній колір може бути іншим. Це пояснюється тим, що в них, крім хлорофілу, є й інші пігменти - червоні, жовті, бурі та ін....

Одномембранні органели

10 Клас

• Ендоплазматична сітка (мал. 20.1) становить собою систему порожнин у вигляді мікроскопічних канальців та їхніх потовщень (так званих цистерн). Діаметр канальців становить 50-100 нм, а цистерн - до 1000 нм і більше. Вони обмежені мембраною та сполучаються між собою. Розрізняють два різновиди ендоплазматичної сітки: зернисту та незернисту. Зерниста (гранулярна) ендоплазматична сітка дістала свою назву тому, що на її мембранах розташовані рибосоми. На мембранах незернистої (агранулярної) ендоплазматичної сітки рибосоми відсутні. Обидва різновиди ендоплазматичної сітки мають тісні просторові зв’язки; зокрема, їхні мембрани можуть безпосередньо переходити одна в іншу. Одна з основних функцій зернистої ендоплазматичної сітки - забезпечення транспорту білків по клітині. Частина синтезованих у клітині білків використовується для її власних потреб, а частина виводиться за межі клітини (мал. 20.2). Білки синтезуються за участі рибосом, які можуть розташовуватися в цитозолі та на поверхні зернистої едоплазматичної сітки. У її порожнинах білки набувають притаманної їм просторової конформації, до них можуть приєднуватися небілкові компоненти. Синтезовані білки використовуються для побудови плазматичної мембрани та зовнішньої мембрани оболонки ядра в період між поділами клітини....

Цитоплазма. Клітинні включення

10 Клас

Як вам відомо, внутрішній вміст клітини, за винятком ядра, називають цитоплазмою. Її основою є неоднорідний колоїдний розчин - цитозоль, або гіалоплазма, в якому розміщені різноманітні органели, включення та цитоскелет. Цитоплазма як внутрішнє середовище клітини характеризується відносною сталістю будови та властивостей. • Цитозоль і його функції. Цитозоль (від грец. китос - клітка та нім. золь - колоїдний розчин), або гіалоплазма (від грец. гіалос - скло та плазма - виліплене, сформоване), - частина цитоплазми, що становить собою безбарвний водний розчин органічних і неорганічних речовин. З органічних сполук у цитозолі є білки, амінокислоти, моно-, оліго- та полісахариди, ліпіди, різні типи РНК тощо, а з неорганічних - катіони металів (зокрема, Са2+, К+), аніони карбонатної та ортофосфатної кислот, Cl- та ін. У цитозолі між структурами цитоскелета розташовані різноманітні органели та клітинні включення. Цитозоль може перебувати в рідкому (золь) або драглистому (гель) станах. Так, у клітинах тварин зовнішній шар цитоплазми (ектоплазма), розташований під плазматичною мембраною, прозорий і щільний. Натомість її внутрішній шар (ендоплазма) меншої густини, містить різноманітні органели і включення. Ці два шари можуть переходити один в інший, що спостерігають, наприклад, в амеб під час утворення несправжніх ніжок (мал. 19.1). Таким чином, перехід цитозолю з одного стану в інший забезпечує амебоїдний рух клітин, а також процеси ендо- та екзоцитозу. Пригадайте: ендоцитоз - поглинання клітинами твердих часток і розчинів сполук; екзоцитоз - це виведення з клітини певних речовин (наприклад, гормонів або ферментів). Фізичний стан цитозолю впливає на швидкість перебігу біохімічних процесів: чим він густіший, тим повільніше відбуваються хімічні реакції. Важливим показником цього стану є концентрація в цитозолі йонів Гідрогену (pH), від якої, зокрема, залежить активність певних ферментів....

Особливості організації каріотипу різних організмів

10 Клас

Основу хромосоми становить дволанцюгова молекула ДНК, зв’язана з ядерними білками (мал. 18.1). Крім того, до складу хромосом входять РНК та ферменти. Молекули ДНК у хромосомах розташовані певним чином. Ядерні білки утворюють особливі структури - нуклеосоми, навколо яких наче накручені нитки ДНК. Кожна нуклеосома складається з восьми білкових глобул. Особливі білки зв’язують нуклеосоми між собою. Така організація забезпечує компактне розміщення молекул ДНК у хромосомах, оскільки довжина цих молекул у розгорнутому стані значно перевищує довжину хромосом. Наприклад, довжина хромосом під час поділу клітини в середньому становить 0,5-1 мкм, а розгорнутих молекул ДНК - декілька сантиметрів і більше. Таке пакування молекули ДНК дає їй змогу ефективно керувати процесами біосинтезу білків, процесами власного самоподвоєння, захищає від пошкоджень під час поділу клітини. Кожна хромосома складається з двох поздовжніх частин - хроматид, які з’єднані між собою в місці, яке називають зоною первинної перетяжки (мал. 18.2). Вона поділяє хромосоми на дві ділянки - плечі. Якщо перетяжка розташована посередині хромосоми, то плечі мають однакові або майже однакові розміри. А якщо перетяжка зсунута до одного з кінців хромосоми, то плечі більш-менш відрізняються за довжиною. У зоні первинної перетяжки є ділянка хромосоми зі специфічною структурою, що з’єднує сестринські хроматиди, - центромера. На ній формуються білкові структури - кінетохори (від грец. кінео - рухаюсь та хорео - іду вперед). Під час поділу клітини до кінетохора приєднуються нитки веретена поділу, що забезпечує впорядкований розподіл цілих хромосом або окремих хроматид між дочірніми клітинами. Деякі хромосоми мають ще й вторинну перетяжку, де розташовані гени, які відповідають за утворення ядерець....

Будова та функції ядра клітин еукаріотів. Нуклеоїд прокаріотів

10 Клас

• Ядерні та без’ядерні клітини еукаріотів. Вам уже відомо, що ядро - обов’язкова складова будь-якої еукаріотичної клітини, в якій зберігається спадкова інформація. Ядро регулює процеси життєдіяльності клітин. Лише деякі типи клітин еукаріотів позбавлені ядра. Це, зокрема, тромбоцити та еритроцити більшості ссавців, ситоподібні трубки вищих рослин. У таких клітинах ядро формується на початкових етапах розвитку, а потім руйнується. Втрата ядра супроводжується нездатністю клітини до розмноження (поділу). У багатьох клітин є лише одне ядро, але є клітини, які містять декілька або багато ядер (інфузорії, форамініфери, деякі водорості, гриби, посмуговані м’язові волоконця тощо). Навіщо певним типам клітин потрібне не одне ядро, а кілька чи багато? Річ у тім, що кожному типу клітин властиве певне стале співвідношення між об’ємами ядра та цитоплазми (ядерно-цитоплазматичне співвідношення). Адже ядро певного об’єму може забезпечувати процеси біосинтезу білків лише у відповідному об’ємі цитоплазми. Тому в клітинах великих розмірів або з посиленою інтенсивністю обміну речовин часто від двох до кількох тисяч ядер. • Будова ядра. Форма ядра достатньо різноманітна. Найчастіше воно кулясте або еліпсоподібне, рідше - неправильної форми (наприклад, у деяких типів лейкоцитів ядра мають відростки). Розміри ядер варіюють від 1 мкм (деякі одноклітинні тварини, водорості) до 1 мм (яйцеклітини деяких риб і земноводних). Ядро складається з поверхневого апарату і внутрішнього середовища (матриксу) (мал. 17.1). Поверхневий апарат ядра утворений двома мембранами - зовнішньою та внутрішньою, між якими є заповнений рідиною щілиноподібний простір від 20 до 60 нм завширшки. Але в деяких місцях зовнішня мембрана сполучена з внутрішньою навколо мікроскопічних отворів - ядерних пор (мал. 17.2) діаметром близько 100 нм....

Навігація